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a b s t r a c t

Dominance-based rough set approach (DRSA) is widely applied to multi-criteria decision analysis
and sorting problems for data with preference-ordered relation, where attribute reduction is an
important research field. At present, based on DRSA, many traditional attribute reduction approaches
are extended to process a static ordered data. In real-world applications, ordered data with time-
evolving objects widely exist, which is called a dynamic ordered data. However, for dynamic ordered
data, employing these existing approaches to compute reducts is very time-consuming, since they
need to recalculate knowledge from scratch when multiple objects vary. Incremental updating method
can effectively complete the dynamic learning task, because it can acquire new knowledge based on
previous knowledge. Inspired by this, this work studies incremental attribute reduction approaches for
dynamic ordered data in DRSA framework. First, matrix-based method for calculating the dominance
conditional entropy is investigated. Next, the updating principles of the dominance relation matrix
and dominance diagonal matrix are studied when objects vary. Finally, two incremental algorithms
of attribute reduction are proposed when multiple objects are added to or deleted from an ordered
decision system, respectively. Experiments on different datasets provided by University of California
at Irvine (UCI) are conducted to evaluate the proposed algorithms. Experimental results show that
the proposed incremental algorithms can effectively and efficiently accomplish the task of attribute
reduction in dynamic ordered data.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Feature selection, also known as attribute reduction in rough
et theory (RST), has elicited widespread attention in data min-
ng [1–4]. This approach aim to remove redundant or irrelevant
ttributes from complex data and achieve the goals of reducing
imensionality, avoiding overfitting, thereby saving the time and
pace cost of calculation. In real-life applications, datasets usu-
lly exhibit dynamic characteristics over time-evolving, i.e., dy-
amic datasets. This promotes the development of incremental
echniques for attribute reduction [5–9]. Incremental attribute
eduction approaches are widely studied, because they can ef-
ectively and efficiently complete attribute reduction tasks for
ynamic datasets. However, the existing incremental approaches
o not consider the monotonous ordered relation of samples in
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dynamic datasets. Motivated by this issue, this study focuses on
incremental attribute reduction approaches for dynamic ordered
datasets.

With the development of the information age, feature se-
lection methods have been continuously improved and inno-
vated as the complexity and diversity of data structures increase.
Many excellent models and algorithms for feature selection have
been proposed. Deep learning is an important machine learn-
ing method that can automatically learning features represen-
tation from complex data. Some commonly used deep learning
based feature representation methods are convolutional neural
networks (CNN) [10], restrict Boltzmann machine (RBM) [11]
and recurrent neural networks (RNN) [12]. In recent years, deep
learning has also been applied to feature selection. Zhao et al. pre-
sented a heterogeneous feature selection approach with multi-
modal deep neural networks and sparse group lasso algorithm
[13]. Semwal et al. proposed a robust and accurate feature se-
lection with deep learning approach for classification [14]. Chen
et al. constructed feature selection of deep learning models for

electroencephalogram-based a rapid serial visual presentation
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arget detection [15]. Furthermore, in real-world applications,
eep learning based feature selection approaches are successfully
sed to financial forecast [16], remote sensing scene classifica-
ion [17], and traffic classification [18], etc. Evolutionary algo-
ithms simulate the behavior of living beings in nature, which is
n effective way to solve the combination optimization problem
n feature selection [19]. Genetic algorithm is one of most impor-
ant evolutionary algorithm, which has been widely used in fea-
ure selection. Nag et al. studied feature extraction and selection
pproach for parsimonious classifiers with multi-objective ge-
etic programming [20]. Labani et al. proposed a multi-objective
enetic algorithm for text feature selection using the relative
iscriminative criterion [21]. Ma et al. designed a genetic pro-
ramming based feature selection approach for classification [22].
as et al. proposed an ensemble feature selection method us-
ng bi-objective genetic algorithm [23]. Li et al. constructed a
ulti-objective feature selection method using hybridization of
genetic algorithm and direct multi-search for key quality char-
cteristic selection [24].
On feature selection, RST is an important theoretical basis [25–

7]. RST proposed by Pawlak serves as an effective mathematical
ool for dealing with inconsistent and uncertain information [28].
bjects with the same description based on equivalence relations
ompose the basic granules of knowledge. However, in ordinal
lassification tasks, RST ignores the dominance principle, which
equires that objects with better descriptions should not get
orse labels. In other words, RST does not consider inconsisten-
ies from the criteria, namely, attributes with preference-ordered
omains, which exist in credit level, article rank, and profit rate,
tc. To offset this deficiency, Greco et al. proposed dominance-
ased rough set approach (DRSA) [29], which has been suc-
essfully applied to multi-criteria decision-making (MCDM) [30].
ince its inception, different extended DRSA models have been
roposed, including monotonic variable consistency rough set ap-
roaches [31], stochastic dominance-based rough set model [32],
oft dominance based rough sets [33], and generalized dominance
ough set models [34], etc. Moreover, DRSA has been extended
nd applied to various types of ordered information systems [35–
8]. Therefore, DRSA is an effective tool to cope with knowledge
cquisition in ordered data, and it is the theoretical basis of this
ork.
Attribute reduction methods based on DRSA have been ex-

ensively studied in the past decades, and they are used to deal
ith static ordered dataset [39–43]. Although these methods
an effectively remove redundant attributes from an ordered
ata, they ignore that ordered data usually evolve over time
n real-life applications. For example, student’s grade data is an
xample of ordered data. With the graduation and enrollment of
tudents, this data has dynamic characteristics. For dynamic or-
ered datasets, employing these existing approaches to compute
educts are very time-consuming, since they need to recalculate
nowledge from scratch when the dataset changes slightly. This
efect increases the consumption of space and time. Accordingly,
n effective and efficient attribute reduction method is urgently
equested to process dynamic ordered datasets.

Incremental learning is an efficient approach, which can
uickly acquire new knowledge from dynamic datasets by uti-
izing previous knowledge [44–46]. In the past decade, scholars
ave proposed numerous incremental learning algorithms for at-
ribute reduction, and they can be generally divided into: objects-
riented, attributes-oriented, and attribute values-oriented.

• For the variation of objects. Liang et al. proposed an incre-
mental updating feature subset approach via using informa-
tion entropy [47]. Zhang et al. developed the incremental
feature selection methods using a fuzzy rough set based
2

information entropy with an active sample selection strat-
egy [48]. Yang et al. studied incremental feature selection
approaches with an active sample selection principle [49],
and then the authors further presented an incremental fea-
ture selection method for dynamic heterogeneous data [50].
Shu et al. introduced an incremental feature selection al-
gorithm for dynamic hybrid data [51]. For fused decision
tables, Ye et al. designed an incremental feature selection
approach via using the pseudo value of discernibility ma-
trix [52]. Das et al. proposed a group incremental feature
selection algorithm by using genetic algorithm [53].
• For the variation of attributes. Chen et al. introduced a

discernible relations based incremental attribute reduction
method for dynamically increasing attributes [54]. Wang
et al. proposed an effective attribute reduction algorithm
based on information entropy for dynamic datasets with
attribute set changes [55]. In dynamic covering decision
information systems, Lang et al. studied incremental al-
gorithms based on related families [56]. Zeng et al. in-
vestigated a fuzzy rough set based incremental attribute
reduction method on hybrid data [57].
• For the variation of attribute values. Wang et al. proposed

an effective feature selection algorithm by using three repre-
sentative entropies [58]. Wei et al. presented a dynamic fea-
ture selection approach by using discernibility matrix [59],
and then they developed a accelerating incremental algo-
rithm via using a technique of compressing decision ta-
ble [60]. Cai et al. developed two incremental attribute
reduction approaches for coarsening and refining covering
granularity [61]. Furthermore, Dong and Chen designed a
novel RST-based incremental attribute reduction algorithm
for decision table with simultaneously increasing samples
and attributes [62]. Jing et al. introduced incremental meth-
ods of calculating reducts for a decision table with simulta-
neously time-evolving objects and attributes [63].

It should be found that the aforementioned incremental attribute
reduction approaches do not consider dynamic datasets with a
preference-order relation. Thence, the existing incremental at-
tribute reduction approaches are not suitable for dynamic or-
dered datasets, which motivates this study.

Uncertainty measure play a key role in attribute reduction
approach, which is used to measure the importance of attribute
and quantify the inconsistency in data. Information entropy, as a
common uncertainty measure, has been widely concerned. Re-
lated researches were extended after information entropy was
proposed by Shannon [64]. For ordered data, Hu et al. proposed
ascending and decreasing rank conditional entropies, and they
were used to evaluate the consistency degree of the ranking
of objects under attributes and decisions [65]. In this study,
we use the ascending rank conditional entropy (also called the
dominance conditional entropy) as the uncertainty measure of
attribute reduction approach.

Owing to the matrix form of information can simplify the
calculation process and intuitively represent the construction of
a method, matrix-based computing technology is widely used
in incremental learning [66–69]. Moreover, the relation between
objects in DRSA is a preference-ordered relation, which is an-
tisymmetric. So the approximate space formed via DRSA is an
irregular cover, not a regular division. Hence, using set repre-
sentation to investigate issues in DRSA would be tedious and
complicated, especially in a dynamic ordered data environment.
Generally speaking, matrix-based technique is a simple and effec-
tive method for acquiring knowledge in covering-based approxi-
mate space, which can be effectively used for dynamic knowledge

acquisition. Considering the advantages of matrix form, this work
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xploits matrix form to study the incremental mechanism of the
ominance conditional entropy.
Based on the above discussion, we believe that how to employ

ncremental learning approach to effectively and efficiently select
he necessary attributes in the dynamic ordered data is a topic
orth discussing. Therefore, in this study, we develop incremen-
al approaches of attribute reduction for dynamic ordered data in
RSA framework. The main contributions are three-folds: (1) We
resent the definitions of dominance relation matrix and domi-
ance diagonal matrix in an ordered information system, and pro-
ose a method for calculating the dominance conditional entropy
n matrix form. (2) The incremental calculation method of matrix-
ased dominance conditional entropy is proposed when multiple
bjects are added to or deleted from the ordered decision sys-
em. On this basis, we develop two incremental algorithms for
ttribute reduction. (3) Experiments on nine datasets from UCI
how that the proposed algorithms are effective and efficient.
The paper is organized as follows. Section 2 reviews the re-

ated work. In Section 3, a matrix-based method for calculating
ominance conditional entropy is presented and proved, and
hen a heuristic attribute reduction algorithm is introduced. In
ection 4, the updating mechanisms of matrix-based dominance
onditional entropy are proposed. On this basis, we develop two
ncremental attribute reduction algorithms when multiple ob-
ects are added to or deleted from an ordered decision sys-
em, respectively. Section 5 presents the experimental results on
ine datasets, which demonstrate the effectiveness and efficiency
f the proposed algorithms. Section 6 concludes the work and
utline the future research.

. Preliminaries

In this section, we briefly review some relevant knowledge in
RSA.

.1. Ordered decision system and dominance-based rough set ap-
roach

efinition 2.1 ([28], Information System). In RST, an information
system is a 4-tuple S = (U, AT , V , f ), where U = {x1, x2, . . . , xn}
s a non-empty finite set of objects; AT is a non-empty finite set
of attributes; V =

⋃
a∈AT Va, Va is the domain of attribute a;

: U × AT → V is the information function with f (x, a) ∈ Va,
a ∈ AT and x ∈ U .

In an information system, if the domain of an attribute is or-
ered in accordance with an increasing or decreasing preference,
hen the attribute is a criterion. The information system is called
rdered information system (OIS) if all attributes are criterions.
n OIS is denoted as S⪰ = (U, AT , V , f ).
In real-world applications, decision makers usually know the

rder of criterion values within their domain or prior knowledge.
uch as, for the test score and operating profit, the higher the
etter; for risk assessment, the lower the better with all other
hings being equal. In an OIS, the domain of criterion a ∈ AT is
completely pre-ordered by the relation ⪰a: x ⪰a y ⇔ f (x, a) ≥
f (y, a) (i.e., an increasing preference) or x ⪰a y⇔ f (x, a) ≤ f (y, a)
(i.e., a decreasing preference), where x, y ∈ U . For simplicity and
without any loss of generality, the following we only consider
criteria with increasing preferences.

Definition 2.2 ([32], Dominance Relation). Let S⪰ = (U, AT , V , f )
be an OIS, ∀P ⊆ AT , P ̸= ∅, the dominance relation DP is defined
as

DP = {(x, y) ∈ U × U : f (x, a) ≥ f (y, a),∀a ∈ P}. (1)
3

Table 1
A part of academic transcript.

x1 x2 x3
a1 98 87 78
a2 95 88 65
d A B C

Property 2.1 ([32]). DP is a dominance relation, the following prop-
rties hold.
1) Reflexive: ∀x ∈ U, then xDPx holds;
2) Non-symmetric: ∀x, y ∈ U, if xDPy, then yDPx does not hold;
3) Transitive: ∀x, y, z ∈ U, if xDPy and yDPz, then xDPz holds.

efinition 2.3 ([32], Knowledge Granules). Let S⪰ = (U, AT , V , f )
e an OIS, ∀P ⊆ AT , P ̸= ∅, two knowledge granules of x
re called P-dominating set and P-dominated set, which are
espectively defined as follows
+

P (x) = {y ∈ U : yDPx}; (2)
−

P (x) = {y ∈ U : xDPy}. (3)

xample 1. Table 1 is part of the academic transcript, where a1
nd a2 represent professional course 1 and 2, respectively, and x1,
2, and x3 represent three students. Table 1 is a typical OIS, where
= {a1, a2}, U = {x1, x2, x3}, DP is a dominance relation.
Next, we verify Property 2.1 based on Definition 2.2 as follows.

(1) ∀x ∈ U , then xDPx holds; (2) x1DPx2 holds, but x2DPx1 does
not hold; (3) x1DPx2 and x2DPx3 hold, then x1DPx3 also holds.
According to Definition 2.3, P-dominating set and P-dominated
et are respectively calculated as D+P (x1) = {x1}, D

+

P (x2) = {x1, x2},
nd D+P (x3) = {x1, x2, x3}; D

−

P (x1) = {x1, x2, x3}, D
−

P (x2) = {x2, x3},
and D−P (x3) = {x3}.

Property 2.2 ([32]). For any P1, P2 ⊆ AT and ∀x ∈ U, the following
properties hold.
(1) If P1 ⊆ P2, then D+P2 (x) ⊆ D+P1 (x) and D−P2 (x) ⊆ D−P1 (x);
(2) D+P1 (x) ∩ D+P2 (x) = D+P1∪P2 (x) and D−P1 (x) ∩ D−P2 (x) = D−P1∪P2 (x).

An OIS with decision is called an ordered decision system
(ODS), which is denoted as S⪰ = (U, C ∪ {d}, V , f ), where AT
is divided into the condition attribute set C and the decision
attribute d. Note that C ∪ {d} = AT and d /∈ C . According to
decision attribute d, U can be divided into a family of equivalent
classes, denoted by Cl = {Cln, n ∈ T }, where T = {1, 2, . . . , |Vd|}.
The decision classes are also preference-ordered, that is, ∀r, s ∈ T ,
if r > s, then ∀x ∈ Clr is preferred to ∀y ∈ Cls. In DRSA,
the sets to be approximated are upward and downward unions,
which are respectively denoted as Cl⪰n =

⋃
n′≥n Cln′ and Cl⪯n =⋃

n′≤n Cln′ (∀n, n
′
∈ T ). The statement x ∈ Cl⪰n means that x

belongs to at least class Cln, whereas x ∈ Cl⪯n means that x belongs
to at most class Cln.

Definition 2.4 ([32], Approximations). Let S⪰ = (U, C ∪ {d}, V , f )
be an ODS, for any P ⊆ C , the lower and upper approximations
of Cl⪰n are respectively defined as follows

P(Cl⪰n ) = {x ∈ U : D+P (x) ⊆ Cl⪰n }; (4)

P(Cl⪰n ) = {x ∈ U : D−P (x) ∩ Cl⪰n ̸= ∅}. (5)

The lower and upper approximations of Cl⪯n are respectively
defined as follows

P(Cl⪯n ) = {x ∈ U : D−P (x) ⊆ Cl⪯n }; (6)

P(Cl⪯n ) = {x ∈ U : D+P (x) ∩ Cl⪯n ̸= ∅}. (7)
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xample 2. Continuing from Example 1. Table 1 is also an ODS,
here the values of the decision d is ranked as C ≺ B ≺ A.
he upward and downward unions are Cl⪰1 = {x1, x2, x3}, Cl

⪰

2 =

x1, x2}, and Cl⪰3 = {x1}, Cl
⪯

1 = {x3}, Cl
⪯

2 = {x2, x3}, and Cl⪯3 =
x1, x2, x3}. According to Definition 2.4, the approximations of the
pward unions are calculated as P(Cl⪰1 ) = {x1, x2, x3}, P(Cl

⪰

2 ) =
x1, x2}, P(Cl

⪰

3 ) = {x1}, P(Cl
⪰

1 ) = {x1, x2, x3}, P(Cl
⪰

2 ) = {x1, x2},
and P(Cl⪰3 ) = {x1}. The approximations of the downward unions
are calculated as P(Cl⪯1 ) = {x3}, P(Cl

⪯

2 ) = {x2, x3}, P(Cl
⪯

3 ) =
x1, x2, x3}, P(Cl⪯1 ) = {x3}, P(Cl⪯2 ) = {x2, x3}, and P(Cl⪯3 ) =
x1, x2, x3}.

.2. Attribute reduction based on dominance conditional entropy

In this subsection, we introduce some basic concepts of domi-
ance information entropy (DIE), dominance conditional entropy
DCE), and attribute reduction approach based on DCE in an ODS.

efinition 2.5 ([65], DIE). Let S⪰ = (U, C∪{d}, V , f ) be an ODS, for
ny A ⊆ C , the dominance information entropy of U with respect
o A is defined as

H⪰A (U) = −
1
|U |

n∑
i=1

log
|D+A (xi)|
|U |

, (8)

where |∗| represents the cardinality of set ∗. In addition, for any
A, B ⊆ C , the dominance information entropy of U with respect
to A and B is defined as

DH⪰A∪B(U) = −
1
|U |

n∑
i=1

log
|D+A (xi) ∩ D+B (xi)|

|U |
= −

1
|U |

n∑
i=1

log
|D+A∪B(xi)|
|U |

.

(9)

efinition 2.6 ([65], DCE). Let S⪰ = (U, C ∪ {d}, V , f ) be an ODS,
or any A ⊆ C , the dominance conditional entropy of A to d is
defined as

DH⪰d|A(U) = −
1
|U |

n∑
i=1

log
|D+d (xi) ∩ D+A (xi)|
|D+A (xi)|

= −
1
|U |

n∑
i=1

log
|D+
{d}∪A(xi)|

|D+A (xi)|
.

(10)

From Definition 2.6, we find that DCE reflects the degree of
anking consistency of objects, which is determined by the infor-
ation provided by the conditional attribute set and the decision
ttribute. Since the formula |D

+

d (xi)∩D
+

A (xi)|

|D+A (xi)|
essentially determines

the degree of ranking consistency. According to Eq. (10), we easily
find that the value of DH⪰d|A(U) is inversely proportional to the
degree of ranking consistency, where DH⪰d|A(U) ≥ 0. Namely, the
smaller the value of DH⪰d|A(U), the higher the degree of ranking
consistency, which also indicates that conditional attribute set A
provides more accurate ranking information for the object set,
and vice versa.

In the attribute reduction process, the informative attributes
can be obtained through the attribute significance measures,
which are defined as follows.

Definition 2.7 ([6], DCE-Based Inner Significance Measure). Let
⪰
= (U, C ∪ {d}, V , f ) be an ODS, ∀A ⊆ C and ∀a ∈ A, the

CE-based inner significance measure of a in A is defined as

ig⪰Uinner (a, A, d) = DH⪰d|A−{a}(U)− DH⪰d|A(U). (11)

According to the explanation of DCE, the higher is the inner
ignificance measure, the more important is conditional attribute.
t can select necessary condition attributes in entire condition
ttribute set. In addition, the core attribute set of the attribute
et A is represented as CoreA = {a ∈ A|sig⪰Uinner (a, A, d) > 0}.
4

efinition 2.8 ([6], DCE-Based Outer Significance Measure). Let
⪰
= (U, C ∪ {d}, V , f ) be an ODS, ∀B ⊆ C and ∀a ∈ (C − B),

the DCE-based outer significance measure of a to B is defined as

sig⪰Uouter (a, B, d) = DH⪰d|B(U)− DH⪰d|B∪{a}(U). (12)

Similar to the inner significance measure, the outer signifi-
cance measure can select the necessary condition attributes other
than the selected condition attribute set.

Given an ODS S⪰ = (U, C ∪ {d}, V , f ) and ∀a ∈ C , according
to the heuristic attribute reduction strategy, we can acquire that
if sig⪰Uinner (a, C, d) > 0, then a ∈ CoreC , i.e., a is an indispensable
attribute. Then, a reduct can be gained based on CoreC by gradu-
ally adding selected attributes with the highest outer significance
to CoreC . Next, we introduce the definition of attribute reduction
based on DCE.

Definition 2.9 ([6], Attribute Reduction). Let S⪰ = (U, C∪{d}, V , f )
be an ODS, ∀B ⊆ C , the attribute subset B is a reduct of S⪰ if it
satisfies

(1) DH⪰d|B(U) = DH⪰d|C (U) and
(2) ∀a ∈ B, DH⪰d|B−{a}(U) ̸= DH⪰d|B(U).

The condition (1) ensures the selected attribute subset has the
same distinguish power as the whole attribute set; the condition
(2) ensures that all attributes in the subset are indispensable by
deleting redundant attributes in selected attribute subset. There-
fore, the selected attribute subset is called a reduct if it satisfies
both of these two conditions, otherwise, it is just a relative reduct.

3. Attribute reduction based on dominance conditional en-
tropy in matrix form

In this section, first, we define the dominance relation matrix
and dominance diagonal matrix of OIS. Then, a matrix-based
method for calculating DCE (MDCE) is presented and proved.
Final, we introduce a MDCE based heuristic attribute reduction
algorithm.

3.1. Matrix-based calculation of DCE

Definition 3.1 (Dominance Relation Matrix). Let S⪰ = (U, AT , V , f )
be an OIS, for any A ⊆ AT , DA is a dominance relation under A,
the dominance relation matrix on U with respect to A is defined
as M⪰AU = [m

A
(i,j)]n×n, where

mA
(i,j) =

{
1, xjDAxi;
0, otherwise. (13)

Property 3.1. M⪰AU = [m
A
(i,j)]n×n is a dominance relation matrix,

the following properties hold.
(1) mA

(i,i) = 1, where i ∈ [1, n] and i ∈ N+;
(2)

∑n
j=1 m

A
(i,j) = |D

+

A (xi)| and
∑n

i=1 m
A
(i,j) = |D

−

A (xj)|, where i, j ∈
[1, n] and i, j ∈ N+.

Definition 3.2 (‘‘∩’’ Operation). Let S⪰ = (U, AT , V , f ) be an
OIS, for any A, B ⊆ AT , two dominance relation matrices on U
with respect to A and B are denoted as M⪰AU = [mA

(i,j)]n×n and
M⪰BU = [m

B
(i,j)]n×n. Then ‘‘∩’’ operation between M⪰AU and M⪰BU is

defined as

M⪰AU ∩M⪰BU = [m
A
(i,j) ×mB

(i,j)]n×n. (14)

From Eq. (14), we can easily find that the intuitive meaning of
‘‘∩’’ operation is to obtain a new dominance relation matrix by
multiplying the corresponding elements of any two dominance
relation matrices M⪰AU and M⪰BU . Its practical significance is to
obtain the dominance relation matrix with respect to attribute
sets A and B simultaneously. Subsequently, we introduce this
property.
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roposition 3.1. Let S⪰ = (U, AT , V , f ) be an OIS, for any A, B ⊆
T , then M⪰A∪BU = M⪰AU ∩M⪰BU holds.

roof. According to Definition 3.1, M⪰A∪BU = [mA∪B
(i,j) ]n×n. If m

A∪B
(i,j) =

, i.e., xj ∈ D+A∪B(xi). Then, we have xj ∈ D+A (xi) and xj ∈ D+B (xi),
.e., mA

(i,j) = 1 and mB
(i,j) = 1. So, we can get mA∪B

(i,j) = mA
(i,j)×mB

(i,j) =

1, and vice versa. If mA∪B
(i,j) = 0, i.e., xj ̸∈ D+A∪B(xi), that is, xj ̸∈ D+A (xi)

or xj ̸∈ D+B (xi), i.e., m
A
(i,j) = 0 or mB

(i,j) = 0. Thus, we can obtain
mA∪B

(i,j) = mA
(i,j)×mB

(i,j) = 0, and vice versa. In summary, we can get
mA∪B

(i,j) = mA
(i,j) ×mB

(i,j), i.e., M
⪰A∪B
U = M⪰AU ∩M⪰BU holds. □

Definition 3.3 (Dominance Diagonal Matrix). Let S⪰ =

(U, AT , V , f ) be an OIS, for any A ⊆ AT , the dominance diagonal
matrix of the dominance relation matrix M⪰AU = [mA

(i,j)]n×n is
defined as D⪰AU = [d

A
(i,j)]n×n, where

dA(i,j) =

⎧⎪⎨⎪⎩
n∑

l=1

mA
(i,l), 1 ≤ i, j ≤ n, i = j;

0, 1 ≤ i, j ≤ n, i ̸= j.

(15)

In addition, the determinant of dominance diagonal matrix is ex-
pressed as |D⪰AU | = Πn

i=j=1d
A
ij , the inverse matrix of the dominance

diagonal matrix is represented as (D⪰AU )−1 = [ 1
dA(i,j)
]n×n, where

1
dA(i,j)
=

{ 1∑n
l=1 mA

(i,l)
, 1 ≤ i, j ≤ n, i = j;

0, 1 ≤ i, j ≤ n, i ̸= j.
(16)

orollary 3.1 (MDCE). Let S⪰ = (U, C∪{d}, V , f ) be an ODS, for any
⊆ C, based on the dominance diagonal matrices D⪰AU and D⪰A∪{d}U ,
DCE of A to d is denoted as

DH⪰d|A(U) = −
1
|U |

log |D⪰A∪{d}U · (D⪰AU )−1|. (17)

roof. Based on Definition 2.6, we can get DH⪰d|A(U) =

1
|U |

∑n
i=1 log

|D+
{d}∪A(xi)|

|D+A (xi)|
= −

1
|U | log

Πn
i=1|D

+

{d}∪A(xi)|

Πn
i=1|D

+

A (xi)|
. According to

Definitions 3.1 and 3.3, the dominance diagonal matrices D⪰AU =

[dA(i,j)]n×n and D⪰A∪{d}U = [dA∪{d}(i,j) ]n×n, where dA(i,j) = |D
+

A (xi)| and

dA∪{d}(i,j) = |D
+

A∪{d}(xi)|. Because |D
⪰A∪{d}
U · (D⪰AU )−1| = Πn

i=1
dA∪{d}(i,j)

dA(i,j)
=

Πn
i=1d

A∪{d}
(i,j)

Πn
i=1d

A
(i,j)

=
Πn

i=1|D
+

{d}∪A(xi)|

Πn
i=1|D

+

A (xi)|
. Thus, we can get DH⪰d|A(U) =

DH⪰d|A(U). In summary, the results of calculating the dominance
onditional entropy based on matrix and non-matrix methods are
onsistent. □

From Eq. (17), we find that the core part of MDCE is
D⪰A∪{d}U · (D⪰AU )−1|, which intuitively reflects the proportion of
he diagonal matrices D⪰A∪{d}U to D⪰AU . Its practical significance
s consistent with Eq. (10). Subsequently, an example is used to
xplain how to calculate MDCE.

xample 3. Table 2 is a car evaluation table, which is an example
f ODS. These cars are evaluated by four criteria: maximum
peed, acceleration, climbing ability, and safety performance. In
able 2, U = {x1, x2, x3, x4, x5, x6, x7} stands for seven cars, C =
a1, a2, a3, a4}, where a1 stands for maximum speed, a2 stands
or acceleration, a3 stands for climbing ability, and a4 stands for
afety performance. The values of the different criteria are ranked
s Va1 : low ≺ mid ≺ high ≺ v − high, Va2 : low ≺ mid ≺ high,
a3 : poor ≺ fair ≺ good ≺ v−good, Va4 : fair ≺ good ≺ excellent ,
nd V : D ≺ C ≺ B ≺ A.
d

5

able 2
n example of ordered decision system.
U a1 a2 a3 a4 d

x1 Mid High Fair Excellent D
x2 High Low Fair Good B
x3 Low Mid Good Excellent B
x4 Mid High poor Excellent C
x5 High Low Fair Good A
x6 Low Mid Good Excellent B
x7 High Low Fair Good B

According to Definition 3.1, the dominance relation matrices
M⪰CU and M⪰dU are calculated respectively as

M⪰CU =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

,

M⪰dU =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
0 1 1 0 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 0 0 0 1 0 0
0 1 1 0 1 1 1
0 1 1 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

Taking M⪰CU as an example, Property 3.1 is verified as follows
(1) For any i ∈ [1, 7] and i ∈ N+, mC

(i,i) = 1;
(2) For any i, j ∈ [1, 7] and i, j ∈ N+,

∑7
j=1 m

C
(i,j) = |D

+

C (xi)| and∑7
i=1 m

C
(i,j) = |D

−

C (xj)|, e.g., when i = 1, D+C (x1) = {x1}, we have∑7
j=1 m

C
(1,j) = |D

+

C (x1)| = 1, when j = 1, D−C (x1) = {x1, x4}, we
have

∑7
i=1 m

C
(i,1) = |D

−

C (x1)| = 2.
Subsequently, according to Definition 3.2, the dominance re-

lation matrix M⪰C∪{d}U is calculated as

M⪰C∪{d}U = M⪰CU ∩M⪰dU

=

⎡⎢⎢⎢⎢⎢⎢⎣

1× 1 0× 1 0× 1 0× 1 0× 1 0× 1 0× 1
0× 0 1× 1 0× 1 0× 0 1× 1 0× 1 1× 1
0× 0 0× 1 1× 1 0× 0 0× 1 1× 1 0× 1
1× 0 0× 1 0× 1 1× 1 0× 1 0× 1 0× 1
0× 0 1× 0 0× 0 0× 0 1× 1 0× 0 1× 0
0× 0 0× 1 1× 1 0× 0 0× 1 1× 1 0× 1
0× 0 1× 1 0× 1 0× 0 1× 1 0× 1 1× 1

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

Next, according to Definition 3.3, the diagonal matrices D⪰CU ,
D⪰C∪{d}U , and the inverse matrix (D⪰CU )−1 are calculated as

D⪰CU =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 2 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
0 0 0 0 0 0 3 7×7
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⪰C∪{d}
U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

,

(D⪰CU )−1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1/1 0 0 0 0 0 0
0 1/3 0 0 0 0 0
0 0 1/2 0 0 0 0
0 0 0 1/2 0 0 0
0 0 0 0 1/3 0 0
0 0 0 0 0 1/2 0
0 0 0 0 0 0 1/3

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

Finally, according to Corollary 3.1, MDCE of C to d can be cal-
ulated via using matrices D⪰C∪{d}U and (D⪰CU )−1 as MDH⪰d|C (U) =
1
7 log |D⪰C∪{d}U · (D⪰CU )−1| = 0.3693.

Corollary 3.2 (MDCE-Based Inner Significance Measure). Let S⪰ =
(U, C∪{d}, V , f ) be an ODS, for any B ⊆ C and ∀a ∈ B, MDCE-based
inner significance measure of a in B is denoted as

Msig⪰Uinner (a, B, d) = MDH⪰d|(B−{a})(U)−MDH⪰d|B(U). (18)

The meaning of the inner significance measure based on DCE
and MDCE are consistent, and the results calculated by Eqs. (11)
and (18) are also the same.

Corollary 3.3 (MDCE-Based Outer Significance Measure). Let S⪰ =
(U, C ∪ {d}, V , f ) be an ODS, for any B ⊆ C and ∀a ∈ (C − B),
MDCE-based outer significance measure of a to B is denoted as

Msig⪰Uouter (a, B, d) = MDH⪰d|B(U)−MDH⪰d|B∪{a}(U). (19)

The DCE-based and MDCE-based outer significance measures
have the same meaning, and the results calculated by Eqs. (12)
and (19) are also consistent. Note that in the incremental at-
tribute reduction algorithm, we will use Corollary 3.3 to construct
a sequence of all candidate attributes to accelerate the reduct
selection.

3.2. Heuristic attribute reduction algorithm based on MDCE

This subsection introduces a heuristic attribute reduction
(HAR) algorithm based on MDCE in ODS. This algorithm calcu-
lates a reduct from scratch when objects vary, which retrains
the dynamic ODS as a new one. Thus, this algorithm is a non-
incremental attribute reduction algorithm, which is compared
with incremental algorithms. The detailed steps are introduced
in Algorithm 1.

The detailed explanation of the steps in Algorithm 1 and their
time complexity are given as follows. Step 2 calculates MDCE
from scratch and its time complexity is O(|C ||U |2). Steps 3–8
obtain the indispensable attribute ak, i.e., ak is a core attribute of
he ODS, and its time complexity is O(|C |2|U |2). Steps 10–16 find
he best candidate attribute from remaining attributes C − B to
ttribute subset B until Step 10 no longer holds, i.e., the relative
educt B is obtained, and its time complexity is O(|C |2|U |2). Steps
7–21 delete redundant attributes from relative reduct B and its
ime complexity is O(|B|2|U |2). In summary, the time complexity
f Algorithm 1 is O(|C ||U |2 + |C |2|U |2 + |C |2|U |2 + |B|2|U |2).
urthermore, the space complexity of Algorithm 1 is O(|U |2 +
C ||U |2).

xample 4. The process for calculating the reduct of ODS in
able 2 by using Algorithm 1 is shown in Table 3.
6

Algorithm 1 HAR algorithm
Input: An ODS S⪰ = (U, C ∪ {d}, V , f ).
Output: A reduct RedU .
1: Initialize RedU ← ∅;
2: Calculate MDCE MDH⪰d|C (U) in U via using Corollary 3.1;
3: for k = 1 to |C | do
4: Calculate Msig⪰Uinner (ak, C, d) via using Corollary 3.2;
5: if Msig⪰Uinner (ak, C, d) > 0, then
6: RedU ← RedU ∪ {ak};
7: end if
8: end for
9: Let B← RedU ;
10: while MDH⪰d|B(U) ̸= MDH⪰d|C (U) do
11: for l = 1 to |C − B| do
12: Calculate Msig⪰Uouter (al, B, d) via using Corollary 3.3;
13: end for
14: Select a0 = max{Msig⪰Uouter (al, B, d), al ∈ (C − B)};
15: B← B ∪ {a0}
16: end while
17: for each a ∈ B do
18: if MDH⪰d|(B−{a})(U) = MDH⪰d|B(U), then
19: B← B− {a};
20: end if
21: end for
22: RedU ← B;
23: return RedU ;

4. The incremental mechanism for attribute reduction with
the variation of multiple objects

In an ODS, the variation of multiple objects can be divided into
two types: adding multiple objects and deleting multiple objects.
In this section, two incremental attribute reduction algorithms
based on MDCE are proposed. Since the calculation of MDCE plays
a key role in attribute reduction algorithms, which directly affects
the efficiency of the algorithms. When objects vary, recomputing
MDCE is time-consuming, especially in large data. To overcome
this deficiency, we propose two incremental updating methods
based on dominance relation matrix for calculating MDCE when
objects vary in an ODS. On this basis, incremental algorithms for
attribute reduction are proposed in this section.

4.1. An incremental method for obtaining attribute reduction when
adding multiple objects

In this section, the updating principle of MDCE is firstly pre-
sented when adding multiple objects. Then, algorithm for updat-
ing attribute reduction in an ODS is designed. In each subsection,
examples are given to illustrate the given method.

4.1.1. The updating principle of MDCE w.r.t. adding objects
This subsection introduces the dominance relation matrix

based incremental updating method to compute newMDCE when
multiple objects are added to an ODS. The key step of the method
is to update the dominance relation matrix and dominance di-
agonal matrix. Next, we introduce the update principles of the
correlation matrices.

Proposition 4.1 (Update Dominance Relation Matrix). Given an OIS
S⪰ = (U, AT , V , f ), where U = {x1, x2, . . . , xn}. ∀A ⊆ AT , suppose
that the dominance relation matrix on U with respect to A is M⪰AU =

[mA
(i,j)]n×n, the object set U+ = {xn+1, xn+2, . . . , xn+n′} is added to
⪰ +
S . The updated dominance relation matrix on U ∪U with respect
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Table 3
The illustration of the calculation process of Algorithm 1.
Steps Operations

1 Initialize RedU = ∅.

2 Calculate MDCE of the entire attribute set C to d as MDH⪰d|C (U) = 0.3693, then turn to Steps 3–9.

3–9 For any a ∈ C , calculate inner significance as Msig⪰Uinner (a1, C, d) = 0.2180, Msig⪰Uinner (a2, C, d) = 0,
Msig⪰Uinner (a3, C, d) = 0.2857, Msig⪰Uinner (a4, C, d) = 0. If Msig⪰Uinner (a, C, d) > 0, put a into RedU , then RedU = {a1, a3}. Let
B← RedU , then turn to Step 10.

10 Calculate MDCE of B to d as MDH⪰d|B(U) = 0.2724. Because the condition MDH⪰d|C (U) ̸= MDH⪰d|B(U) is satisfied, then
turn to Steps 11–15.

11–15 For any a ∈ (C − B), calculate outer significance as Msig⪰Uouter (a2, B, d) = 0.0969, Msig⪰Uouter (a4, B, d) = 0.0969, and then
put the a with the maximal outer significance into B, i.e., B = {a1, a3} ∪ {a2} (If they are equal, then choose the one
with the smaller subscript). After obtaining the new attribute subset B, then go to verify the loop condition, i.e.,
turn to Step 10.

10 Calculate MDCE of B to d as MDH⪰d|B(U) = 0.3693. Because the condition MDH⪰d|C (U) ̸= MDH⪰d|B(U) is not satisfied,
then loop is break and calculation step turn to Steps 17–21.

17–21 For any a ∈ B, calculate MDH⪰d|(B−{a})(U) as MDH⪰d|(B−{a1})(U) = 0.5873, MDH⪰d|(B−{a2})(U) = 0.2724,
MDH⪰d|(B−{a3})(U) = 0.6550. Because ∀a ∈ B, MDH⪰d|(B−{a})(U) ̸= MDH⪰d|B(U) holds, there is no redundant attribute in B,
i.e., B = {a1, a2, a3}, then turn to Steps 22–23.

22–23 Output the final reduct as RedU = {a1, a2, a3}.
to A is denoted as M⪰AU∪U+ = [m
′A
(i,j)](n+n′)×(n+n′), where

m′A(i,j) =

⎧⎨⎩
mA

(i,j), (1 ≤ i ≤ n) ∧ (1 ≤ j ≤ n);
1, xjDAxi, (n+ 1 ≤ i ≤ n+ n′) ∨ (n+ 1 ≤ j ≤ n+ n′);
0, otherwise.

(20)

Proof. Assuming that U+ is added to U , then U ∪ U+ =

{x1, x2, . . . , xn, xn+1, xn+2, . . . , xn+n′}. Based on Definition 3.1, the
ominance relation matrix M⪰AU∪U+ can be divided into four parts,

.e., M⪰AU∪U+ =

[
[M1⪰A

U ]n×n [M2⪰A
U,U+ ]n×n′

[M3⪰A
U+,U ]n′×n [M4⪰A

U+ ]n′×n′

]
, where M1⪰A

U rep-

esents the dominance relation matrix of U × U under A, M2⪰A
U,U+

epresents the dominance relation matrix of U × U+ under A,
3⪰A
U+,U represents the dominance relation matrix of U+×U under
, M4⪰A

U+ represents the dominance relation matrix of U+ × U+

nder A. For M1⪰A
U = [m1A

(i,j)]n×n, if xjDAxi, (1 ≤ i ≤ n)∧ (1 ≤ j ≤ n)
holds, then m1A

(i,j) = 1; otherwise, m1A
(i,j) = 0. For M2⪰A

U,U+ =

[m2A
(i,j)]n×n′ , if xjDAxi, (1 ≤ i ≤ n) ∧ (n + 1 ≤ j ≤ n + n′) holds,

then m2A
(i,j) = 1; otherwise, m2A

(i,j) = 0. For M3⪰A
U+,U = [m

3A
(i,j)]n′×n,

if xjDAxi, (n + 1 ≤ i ≤ n + n′) ∧ (1 ≤ j ≤ n) holds, then
m3A

(i,j) = 1; otherwise, m3A
(i,j) = 0. For M4⪰A

U+ = [m
4A
(i,j)]n′×n′ , if

xjDAxi, (n + 1 ≤ i ≤ n + n′) ∧ (n + 1 ≤ j ≤ n + n′)
olds, then m4A

(i,j) = 1; otherwise, m4A
(i,j) = 0. Obviously, m1A

(i,j) =
A
(i,j) always holds for (1 ≤ i ≤ n) ∧ (1 ≤ j ≤ n). From
he above description, we find that M2⪰A

U,U+ , M3⪰A
U+,U , and M4⪰A

U+

an be represented by a characteristic function, i.e., m′A(i,j) =
1 xjDAxi, (n+ 1 ≤ i ≤ n+ n′) ∨ (n+ 1 ≤ j ≤ n+ n′)
0 otherwise

. In sum-

ary, we can get the characteristic function of M⪰AU∪U+ , i.e.,
q. (20). □

Proposition 4.1 provides the principle of updating the domi-
ance relation matrix when adding multiple objects. Its basic idea
s to add three new dominance relation matrices to the original
ominance relation matrix to achieve the purpose of updating the
ominance relation matrix. Next, we use an example to illustrate
t.

xample 5. Continuing from Example 3, U+ = {x8, x9, x10} is
added to Table 2, where x = {mid, high, poor, excellent, C}, x =
8 9

7

{v−high, high, v−good, excellent, C}, and x10 = {low,mid, good,
excellent, A}. M⪰CU∪U+ can be updated by using Proposition 4.1 as

M⪰CU∪U+ =

[
[M1⪰C

U ]7×7 [M2⪰C
U,U+ ]7×3

[M3⪰C
U+,U ]3×7 [M4⪰C

U+ ]3×3

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 0 1 0
0 0 1 0 0 1 0 0 1 1
1 0 0 1 0 0 0 1 1 0
0 1 0 0 1 0 1 0 1 0
0 0 1 0 0 1 0 0 1 1
0 1 0 0 1 0 1 0 1 0
1 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

,

whereM1⪰C
U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

,

M2⪰C
U,U+ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 1 0
0 1 1
1 1 0
0 1 0
0 1 1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
7×3

,

M3⪰C
U+,U =

[ 1 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 1 0

]
3×7

,

M4⪰C
U+ =

[ 1 1 0
0 1 0
0 1 1

]
3×3

.

Proposition 4.2 (Update Dominance Diagonal Matrix). Given an OIS
S⪰ = (U, AT , V , f ), where U = {x1, x2, . . . , xn}. For any A ⊆ AT ,
let the dominance diagonal matrix on U with respect to A is D⪰AU =

[dA ] , the object set U+ = {x , x , . . . , x ′} is added to
(i,j) n×n n+1 n+2 n+n
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⪰. The updated dominance diagonal matrix on U ∪U+ with respect
o A is denoted as D⪰AU∪U+ = [d

′A
(i,j)](n+n′)×(n+n′), where

d′A(i,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dA(i,j) +
n+n′∑
l=n+1

m′A(i,l), 1 ≤ i, j ≤ n, i = j;

n+n′∑
l=1

m′A(i,l), n+ 1 ≤ i, j ≤ n+ n′, i = j;

0, 1 ≤ i, j ≤ n+ n′, i ̸= j.

(21)

roof. Assuming that U+ is added to U , then U ∪ U+ =
x1, x2, . . . , xn, xn+1, xn+2, . . . , xn+n′}. According to Definition 3.3,
e can get D⪰AU∪U+ = [d

′A
(i,j)](n+n′)×(n+n′). Actually, for any 1 ≤ i, j ≤

+ n′, i ̸= j, d′A(i,j) = 0 always holds. So we can get that d′A(i,j)
remain unchanged for any 1 ≤ i, j ≤ n, i ̸= j, i.e., d′A(i,j) = dA(i,j).
Based on Definition 3.3, for any 1 ≤ i, j ≤ n, i = j, we can
obtain d′A(i,j) =

∑n+n′
l=1 m′A(i,l) =

∑n
l=1 m

′A
(i,l) +

∑n+n′
l=n+1 m

′A
(i,l). For any

≤ i, l ≤ n, m′A(i,l) = mA
(i,l) always hold. Hence, we can get

′A
(i,j) =

∑n
l=1 m

A
(i,l) +

∑n+n′
l=n+1 m

′A
(i,l) = dA(i,j) +

∑n+n′
l=n+1 m

′A
(i,l). Besides,

or any n+1 ≤ i, j ≤ n+n′, i = j, according to Definition 3.3, the
′A
(i,j) should be calculated, i.e., d′A(i,j) =

∑n+n′
l=1 m′A(i,l). In summary, we

an get the characteristic function of D⪰AU∪U+ , i.e., Eq. (21). □

xample 6. Continuing from Example 5, known matrices M⪰CU∪U+

nd D⪰CU , we can update matrix D⪰CU∪U+ by using Proposition 4.2
s

⪰C
U∪U+

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+ 1 0 0 0 0 0 0 0 0 0
0 3+ 1 0 0 0 0 0 0 0 0
0 0 2+ 2 0 0 0 0 0 0 0
0 0 0 2+ 2 0 0 0 0 0 0
0 0 0 0 3+ 1 0 0 0 0 0
0 0 0 0 0 2+ 2 0 0 0 0
0 0 0 0 0 0 3+ 1 0 0 0
0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

.

Here we explain how to calculate a new MDCE by updating
he dominance relation matrix and its dominance diagonal matrix
hen adding objects. For any A ⊆ C , the known original matrices
re M⪰AU , M⪰A∪{d}U , D⪰AU , and D⪰A∪{d}U . When U+ is added to S⪰,

according to Propositions 4.1 and 4.2, we can get the updated
dominance diagonal matrices D⪰AU∪U+ and D⪰A∪{d}U∪U+ . Therefore, it is
easy to calculate MDCE MDH⪰d|A(U ∪ U+) by Corollary 3.1.

4.1.2. An incremental attribute reduction algorithm w.r.t. adding
objects

In this subsection, an incremental attribute reduction algo-
rithm while adding multiple objects (IAR-A) based on the updat-

ing principle of MDCE is given in Algorithm 2. Then, the time s

8

and space complexity of the proposed algorithm are analyzed.
Lastly, we demonstrate the process of the proposed algorithm by
an example.

Algorithm 2 IAR-A algorithm
Input:

(1) An original ODS S⪰ = (U, C ∪ {d}, V , f ), where U =

{x1, x2, . . . , xn}, U+ = {xn+1, xn+2, . . . , xn+n′ } is an added object set;
(2) The original reduct RedU on U;
(3) The original dominance relation matrices M⪰CU = [mC

(i,j)]n×n,

M⪰RedUU = [mRedU
(i,j) ]n×n, and M⪰dU = [m

d
(i,j)]n×n;

(4) The original dominance diagonal matrices D⪰CU = [dC(i,j)]n×n,

D⪰C∪{d}U = [dC∪{d}(i,j) ]n×n, D⪰RedUU = [dRedU(i,j) ]n×n, and D⪰RedU∪{d}U =

[dRedU∪{d}(i,j) ]n×n.
Output: A new reduct RedU ′ on U ∪ U+
1: Initialize B ← RedU , U ′ ← U ∪ U+, M⪰CU ′ ← M⪰CU , M⪰BU ′ ← M⪰BU ,

M⪰dU ′ ← M⪰dU , D⪰CU ′ ← D⪰CU , D⪰C∪{d}U ′ ← D⪰C∪{d}U , D⪰BU ′ ← D⪰BU , and
D⪰B∪{d}U ′ ← D⪰B∪{d}U ;

2: Compute new dominance relation matrices M⪰CU ′ ←

[m′C(i,j)](n+n′)×(n+n′), M⪰BU ′ ← [m′B(i,j)](n+n′)×(n+n′), and M⪰dU ′ ←

[m′d(i,j)](n+n′)×(n+n′) by using Proposition 4.1;
3: Compute dominance relation matrices M⪰C∪{d}U ′ and M⪰B∪{d}U ′ by using

Proposition 3.1;
4: Compute new dominance diagonal matrices D⪰CU ′ ←

[d′C(i,j)](n+n′)×(n+n′), D⪰C∪{d}U ′ ← [d′C∪{d}(i,j) ](n+n′)×(n+n′), D⪰BU ′ ←

[d′B(i,j)](n+n′)×(n+n′), and D⪰B∪{d}U ′ ← [d′B∪{d}(i,j) ](n+n′)×(n+n′) by using
Proposition 4.2;

5: Compute new MDCE MDH⪰d|C (U
′) and MDH⪰d|B(U

′) by using Corol-
lary 3.1;

6: if MDH⪰d|C (U
′) = MDH⪰d|B(U

′), then
7: go to step 17;
8: else
9: go to step 11;
10: end if
11: For each a ∈ (C − B), compute Msig⪰U

′

outer (a, B, d) by using Corol-
lary 3.3, then construct a descending sequence by Msig⪰U

′

outer (a, B, d),
and record the results by {a′1, a

′

2, . . . , a
′

|C−B|} ;
12: while MDH⪰d|C (U

′) ̸= MDH⪰d|B(U
′) do

13: for h = 1 to |C − B| do
14: select B← B ∪ {a′h} and compute MDH⪰d|B(U

′);
15: end for
16: end while
17: for each a ∈ B do
18: compute MDH⪰d|(B−{a})(U

′);
19: if MDH⪰d|(B−{a})(U

′) = MDH⪰d|B(U
′), then

20: B← B− {a};
21: end if
22: end for
23: RedU ′ ← B;
24: return RedU ′ ;

The detailed description of the steps in Algorithm 2 and their
time complexity are given as follows. Steps 2–4 calculate new
dominance relation matrices and its dominance diagonal matri-
ces in incremental manners by using Propositions 4.1 and 4.2
and its time complexity is O(|C∥U+∥U ′|). Step 5 computes new
MDCE by using Corollary 3.1. Steps 6–10 determine whether
the new MDCE under the original attribute subset (i.e. original
reduct) is equal to that of under the entire attribute set; if yes,
then keep the original attribute subset unchanged. Steps 11–
16 arrange the remaining attributes in descending order, and
incrementally update the selected attribute subset until Step 12
no longer holds, its time complexity is O((|C | − |B|)|U ′|2). Steps
7–22 delete redundant attributes from the selected attribute
ubset and its time complexity is O(|B|2|U ′|2). Steps 23–24 output
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Table 4
The comparisons of the time and space complexity of algorithms HAR and IAR-A.
Algorithm HAR IAR-A

Time complexity O(|C ||U ′|2 + |C |2|U ′|2 + |C |2|U ′|2 + |B|2|U ′|2) O(|C ||U+||U ′| + (|C | − |B|)|U ′|2 + |B|2|U ′|2)
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a final reduct. In summary, the time complexity of Algorithm
2 is O(|C∥U+∥U ′| + (|C | − |B|)|U ′|2 + |B|2|U ′|2). Moreover, the
space complexity of Algorithm 2 is O(|U ′|2 + (|C | − |B|)|U ′|2).
The time and space complexity of algorithms HAR and IAR-A are
summarized in Table 4.

Obviously, as shown in Table 4, the time complexity of al-
gorithm IAR-A is usually much less than that of algorithm HAR.
The main reason is that algorithm HAR calculates a new reduct
from scratch when multiple objects are added to the original ODS.
In contrast, algorithm IAR-A uses previous knowledge to quickly
calculate MDCE by the updating mechanism, then calculates a
new reduct based on the greedy search strategy. In real-life
applications, the number of samples in ODS is much larger than
the number of attributes, i.e., |U | ≫ |C |. Therefore, algorithm IAR-
A has a more significant time-saving effect on calculating reduct
for large-scale data. Moreover, the space complexity of algorithm
IAR-A is slightly smaller than that of algorithm HAR.

Subsequently, we present an example to demonstrate the
detailed steps for calculating a new reduct by using Algorithm
2.

Example 7. Continuing from Example 4, the known knowledge
of the original ODS includes the reduct RedU = {a1, a2, a3};
the dominance relation matrices M⪰CU , M⪰RedUU , and M⪰dU ; and
dominance diagonal matrices D⪰CU , D⪰C∪{d}U , D⪰RedUU , and D⪰RedU∪{d}U .
he object set U+ = {x8, x9, x10} is added to U . The calculation
rocess of Algorithm 2 is shown in Table 5.

.2. An incremental method for obtaining attribute reduction when
eleting multiple objects

In this section, the updating principle of MDCE is firstly pre-
ented when deleting multiple objects. Then, algorithm for updat-
ng attribute reduction in an ODS is proposed and the time and
pace complexity of it are analyzed.

.2.1. The updating principle of MDCE w.r.t. deleting multiple ob-
ects

This subsection presents a dominance relation matrix based
ncremental updating method for computing new MDCE when
ultiple objects are deleted from an ODS. The process of cal-
ulating new MDCE is similar to that presented in Section 4.1,
ut the method for updating the relevant matrices is different.
he main reason is that when deleting multiple objects from
he original ODS, we do not need to calculate new dominance
elation matrices. We only need to move the position of the
atrix elements according to the position of the deleted objects,
nd then obtain new dominance relation matrices. The following
aragraphs introduce the updating principles of the dominance
elation matrix and its dominance diagonal matrix.

roposition 4.3 (Update Dominance Relation Matrix). Given an OIS
⪰
= (U, AT , V , f ), where U = {x1, x2, . . . , xn}. ∀A ⊆ AT , suppose

hat the dominance relation matrix on U with respect to A is M⪰AU =

mA
(i,j)]n×n, the object set U− = {xq1 , xq2 , . . . , xqn′ } is deleted from
⪰. The updated dominance relation matrix on U −U− with respect
9

o A is denoted as M⪰AU−U− = [m
′A
(i,j)](n−n′)×(n−n′), where

m′A(i,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mA
(i+kr−1,j+kc−l), (qkr−1 − kr + 2 ≤ i < qkr − kr + 1)

∧(qkc−1 − kc + 2 ≤ j < qkc − kc + 1);

mA
(i+kr−1,j+n′)

, (qkr−1 − kr + 2 ≤ i < qkr − kr + 1)

∧(qn′ − n′ + 1 ≤ j ≤ n− n′);

mA
(i+n′,j+kc−l)

, (qn′ − n′ + 1 ≤ i ≤ n− n′)

∧(qkc−1 − kc + 2 ≤ j < qkc − kc + 1);

mA
(i+n′,j+n′), (qn′ − n′ + 1 ≤ i ≤ n− n′)

∧(qn′ − n′ + 1 ≤ j ≤ n− n′),

(22)

where 1 ≤ kr , kc ≤ n′.

roof. Assuming that U− = {xq1 , xq2 , . . . , xqn′ } is deleted from S⪰
nd 1 ≤ q1 < q2 < · · · < qn′ ≤ n. Firstly, we consider updating
he row coordinate of element mA

(i,j). For any qkr−1 ≤ i < qkr
1 ≤ kr ≤ n′), it is easy to know that kr−1 rows are deleted before
th row from M⪰AU . Thus, the element mA

(i,j) for any qkr−1 ≤ i < qkr
ill be shifted forward by kr − 1 rows, i.e., mA

(i,∗) = m′A(i−kr+1,∗).
hen, we can obtainm′A(i,∗) = mA

(i+kr−1,∗) for any qkr−1−kr+2 ≤ i <

kr−kr+1. In addition, for any qn′−n′+1 ≤ i ≤ n−n′, the element
A
(i,j) will be shifted forward by n′ rows, i.e., mA

(i,∗) = m′A(i−n′,∗),
hich indicates m′A(i,∗) = mA

(i+n′,∗). Next, we consider updating the
olumn coordinate of element mA

(i,j). The updating mechanism of
olumn coordinates is similar to that of row coordinates. Thus,
e can get the update results as follows. For any qkc−1−kc+2 ≤
< qkc − kc + 1, we can obtain m′A(∗,j) = mA

(∗,j+kc−1). For any
n′−n′+1 ≤ i ≤ n−n′, we can obtain m′A(∗,j) = mA

(∗,j+n′). Therefore,
hen the dominance relation matrix M⪰AU−U− is updated, there are

our cases for updating the coordinates of the elements m′A(i,j), as
ollows. (1) if (qkr−1−kr+2 ≤ i < qkr −kr+1)∧ (qkc−1−kc+2 ≤
< qkc − kc + 1) holds, then m′A(i,j) = mA

(i+kr−1,j+kc−l); (2) if
qkr−1 − kr + 2 ≤ i < qkr − kr + 1) ∧ (qn′ − n′ + 1 ≤ j ≤ n − n′)
olds, then m′A(i,j) = mA

(i+kr−1,j+n′)
; (3) if (qn′−n′+1 ≤ i ≤ n−n′)∧

qkc−1−kc+2 ≤ j < qkc −kc+1) holds, then m′A(i,j) = mA
(i+n′,j+kc−l)

;
4) if (qn′ −n′+1 ≤ i ≤ n−n′)∧ (qn′ −n′+1 ≤ j ≤ n−n′) holds,
hen m′A(i,j) = mA

(i+n′,j+n′). In summary, we can get the characteristic
unction of M⪰AU−U− , i.e., Eq. (22). □

xample 8. Continuing from Example 3, the object set U− =
x1, x5} is deleted from Table 2. M⪰CU−U− can be updated by using
roposition 4.3 as

⪰C
U−U− =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎣

1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1

⎤⎥⎥⎦
5×5

,

where the red marked elements represent the deleted elements.

Proposition 4.4 (Update Dominance Diagonal Matrix). Given an OIS
S⪰ = (U, AT , V , f ), where U = {x , x , . . . , x }. For any A ⊆ AT ,
1 2 n
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Table 5
The illustration of the calculation process of Algorithm 2.
Steps Operations

1 Add object set as U ′ ← U ∪ U+ . Initialize original reduct as B← RedU . Initialize known
matrices as M⪰CU ′ ← M⪰CU , M⪰BU ′ ← M⪰BU , M⪰dU ′ ← M⪰dU , D⪰CU ′ ← D⪰CU , D⪰C∪{d}U ′ ← D⪰C∪{d}U ,
D⪰BU ′ ← D⪰BU , and D⪰B∪{d}U ′ ← D⪰B∪{d}U .

2 Update dominance relation matrices as M⪰CU ′ , M
⪰B
U ′ , and M⪰dU ′ , then turn to Step 3.

3 Calculate dominance relation matrices as M⪰C∪{d}U ′ and M⪰B∪{d}U ′ on the basis of the updated
dominance relation matrices in Step 2, then turn to Step 4.

4 Update dominance diagonal matrices as D⪰CU ′ , D
⪰C∪{d}
U ′ , D⪰BU ′ , and D⪰B∪{d}U ′ on the basis of the

updated dominance relation matrices in Steps 2–3, then turn to Step 5.

5 Calculate two new MDCEs as MDH⪰d|C (U
′) = 0.6490, MDH⪰d|B(U

′) = 0.6490 on the basis of the
updated dominance diagonal matrices in Step 4, then turn to Steps 6–10.

6–10 Because the condition MDH⪰d|C (U
′) = MDH⪰d|B(U

′) is satisfied, then the next step turns to Step
17.

17–22 For each a ∈ B, calculate MDH⪰d|(B−{a})(U
′) as MDH⪰d|B−{a1}(U

′) = 0.6490,
MDH⪰d|B−{a2}(U

′) = 0.6105, MDH⪰d|B−{a3}(U
′) = 0.8912. Because MDH⪰d|(B−{a1})(U

′) = MDH⪰d|B(U
′),

a1 is a redundant attribute, and then delete it from B, i.e., B = {a2, a3}, then turn to Steps
23–24.

23–24 Output the final reduct as RedU ′ = {a2, a3}.
let the dominance diagonal matrix on U with respect to A is D⪰AU =

dA(i,j)]n×n, the object set U
−
= {xq1 , xq2 , . . . , xqn′ } is deleted from S⪰.

The updated dominance diagonal matrix on U − U− with respect to
A is denoted as D⪰AU−U− = [d

′A
(i,j)](n−n′)×(n−n′), where

d′A(i,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA(i+k−1,j+k−1) −
n′∑
t=1

mA
(i+k−1,qt ), qk−1 − k+ 2 ≤ i,

j < qk − k+ 1, i = j;

dA(i+n′,j+n′) −
n′∑
t=1

mA
(i+n′,qt ), qn′ − n′ + 1 ≤ i,

j ≤ n− n′, i = j;
0, 1 ≤ i, j ≤ n− n′, i ̸= j,

(23)

here 1 ≤ k ≤ n′.

roof. Assuming that U− is deleted from S⪰, then U − U− =
x1, x2, . . . , xn−n′}. We can get D⪰AU−U− = [d

′A
(i,j)](n−n′)×(n−n′) accord-

ing to Definition 3.3. Actually, for any 1 ≤ i, j ≤ n − n′, i ̸= j,
′A
(i,j) = 0 always holds. So we can get that d′A(i,j) remains unchanged
or any 1 ≤ i, j ≤ n − n′, i ̸= j, i.e., d′A(i,j) = dA(i,j) = 0. For any 1 ≤
, j ≤ n− n′, i = j, we can get d′A(i,j) =

∑n−n′
l=1 m′A(i,l) =

∑n
l=1 m

′A
(i,l) −

n′
t=1 m

′A
(i,t). Since m′A(i,j) = mA

(i,j) is true for any 1 ≤ i, j ≤ n, we
an acquire d′A(i,j) =

∑n
l=1 m

A
(i,l) −

∑n′
t=1 m

A
(i,t) = dA(i,j) −

∑n′
t=1 m

A
(i,t).

ased on Proposition 4.3 and Definition 3.3, for any qk−1 ≤ i, j <

k, i = j, the row and column coordinates of the element dA(i,j)
hould be shifted forward by k−1 positions simultaneously. Thus,
e can obtain d′A(i,j) = dA(i+k−1,j+k−1) −

∑n′
t=1 m

A
(i+k−1,qt ) for any

qk−1 − k+ 2 ≤ i, j < qk − k+ 1, i = j. On the other hand, for any

qn′ − n′+ 1 ≤ i, j ≤ n− n′, i = j, the row and column coordinates

of the element dA(i,j) should be shifted forward by n′ positions
simultaneously. So we can get d′A(i,j) = dA(i+n′,j+n′) −

∑n′
t=1 m

A
(i+n′,qt )

for any qn′ − n′ + 1 ≤ i, j ≤ n− n′, i = j. In summary, we can get
the characteristic function of D⪰AU−U− , i.e., Eq. (23). □
10
Example 9. Continuing from Example 8, on the basis of D⪰CU ,
D⪰CU−U− can be updated by using Proposition 4.4 as

D⪰CU−U− =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 3− 1 0 0 0 0 0
0 0 2− 0 0 0 0 0
0 0 0 2− 1 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 2− 0 0
0 0 0 0 0 0 3− 1

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
2 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2

⎤⎥⎥⎥⎦
5×5

,

where the red marked elements represent the deleted elements,
the blue marked elements represent the changed elements.

4.2.2. An incremental attribute reduction algorithm w.r.t. deleting
objects

An incremental attribute reduction algorithm while deleting
multiple objects (IAR-D) is designed in Algorithm 3, which is
based on the updating principle of MDCE. Then, we analyze the
time and space complexity of the proposed algorithm. Lastly,
an example is presented to demonstrate computation process of
algorithm IAR-D.

The detailed description of the steps in Algorithm 3 and their
time complexity are given as follows. Steps 2–3 compute new
dominance relation matrices and its dominance diagonal matrices
in an incremental manner by using Propositions 4.3 and 4.4, and
its time complexity is O(|U−||U |). Step 4 computes new MDCE
by using Corollary 3.1. Steps 5–9 determine whether the new
MDCE under the original attribute subset (i.e. original reduct) is
equal to that of under the entire attribute set; if yes, then keep
the original attribute subset unchanged. Steps 10–15 arrange
the remaining attributes in descending order, and incrementally
update the selected attribute subset until Step 11 no longer holds,
its time complexity is O((|C | − |B|)|U ′|2). Steps 16–21 delete
redundant attributes from the selected attribute subset and its
time complexity is O(|B|2|U ′|2). Steps 22–23 output a final reduct.
In summary, the time complexity of Algorithm 3 is O(|U−||U | +
(|C | − |B|)|U ′|2 + |B|2|U ′|2). In addition, the space complexity of
Algorithm 3 is O(|U ′|2+(|C |−|B|)|U ′|2). The following we compare
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Algorithm 3 IAR-D algorithm
Input:

(1) An original ODS S⪰ = (U, C ∪ {d}, V , f ), where U =

{x1, x2, . . . , xn}, U− = {xq1 , xq2 , . . . , xqn′ } is a deleted object set;
(2) The original reduct RedU on U;
(3) The original dominance relation matrices M⪰CU = [mC

(i,j)]n×n,

M⪰C∪{d}U = [mC∪{d}
(i,j) ]n×n, M⪰RedUU = [mRedU

(i,j) ]n×n, and M⪰RedU∪{d}U =

[mRedU∪{d}
(i,j) ]n×n.

(4) The original dominance diagonal matrices D⪰CU = [dC(i,j)]n×n,

D⪰C∪{d}U = [dC∪{d}(i,j) ]n×n, D⪰RedUU = [dRedU(i,j) ]n×n, and D⪰RedU∪{d}U =

[dRedU∪{d}(i,j) ]n×n.
Output: A new reduct RedU ′ on U − U−

1: Initialize B ← RedU , U ′ ← U − U−, M⪰CU ′ ← M⪰CU , M⪰C∪{d}U ′ ←

M⪰C∪{d}U , M⪰BU ′ ← M⪰BU , M⪰B∪{d}U ′ ← M⪰B∪{d}U , D⪰CU ′ ← D⪰CU , D⪰C∪{d}U ′ ←

D⪰C∪{d}U , D⪰BU ′ ← D⪰BU , and D⪰B∪{d}U ′ ← D⪰B∪{d}U ;
2: Compute new dominance relation matrices M⪰CU ′ ←

[m′C(i,j)](n−n′)×(n−n′), M⪰C∪{d}U ′ ← [m′C∪{d}(i,j) ](n−n′)×(n−n′), M⪰BU ′ ←

[m′B(i,j)](n−n′)×(n−n′), and M⪰B∪{d}U ′ ← [m′B∪{d}(i,j) ](n−n′)×(n−n′) by using
Proposition 4.3;

3: Compute new dominance diagonal matrices D⪰CU ′ ←

[d′C(i,j)](n−n′)×(n−n′), D⪰C∪{d}U ′ ← [d′C∪{d}(i,j) ](n−n′)×(n−n′), D⪰BU ′ ←

[d′B(i,j)](n−n′)×(n−n′), and D⪰B∪{d}U ′ ← [d′B∪{d}(i,j) ](n−n′)×(n−n′) by using
Proposition 4.4;

4: Compute new MDCE MDH⪰d|C (U
′) and MDH⪰d|B(U

′) by using Corol-
lary 3.1;

5: if MDH⪰d|C (U
′) = MDH⪰d|B(U

′), then
6: go to step 16;
7: else
8: go to step 10;
9: end if
10: For each a ∈ (C − B), compute Msig⪰U

′

outer (a, B, d) by using Corol-
lary 3.3, then construct a descending sequence by Msig⪰U

′

outer (a, B, d),
and record the results by {a′1, a

′

2, . . . , a
′

|C−B|} ;
11: while MDH⪰d|C (U

′) ̸= MDH⪰d|B(U
′) do

12: for h = 1 to |C − B| do
13: select B← B ∪ {a′h} and compute MDH⪰d|B(U

′);
14: end for
15: end while
16: for each a ∈ B do
17: compute MDH⪰d|(B−{a})(U

′);
18: if MDH⪰d|(B−{a})(U

′) = MDH⪰d|B(U
′), then

19: B← B− {a};
20: end if
21: end for
22: RedU ′ ← B;
23: return RedU ′ ;

the time and space complexity of algorithms HAR and IAR-D in
Table 6.

From Table 6, the time complexity of algorithm IAR-D is much
ower than that of algorithm HAR. The main reason is that al-
orithm IAR-D uses the previous knowledge when calculating
he new reduct, while algorithm HAR calculates a new reduct
rom scratch, which does not use the previous knowledge. Thus,
lgorithm HAR is very time consuming for computing a new
educt. Moreover, the storage space required by algorithm HAR
s also greater than that of algorithm IAR-D.

The following we present an example to demonstrate the
etailed steps for calculating a new reduct by using Algorithm
.

xample 10. Continuing from Example 4, the known knowledge

f the original ODS includes the reduct RedU = {a1, a2, a3}; the

11
ominance relation matrices M⪰CU , M⪰C∪{d}U , M⪰RedUU , and
⪰RedU∪{d}
U ; and dominance diagonal matrices D⪰CU , D⪰C∪{d}U , D⪰RedU ,
nd D⪰Red∪{d}U . The object set U− = {x1, x5} is deleted from U . The
alculation process of Algorithm 3 is shown in Table 7.

. Experimental analysis

In this section, a series of experiments have been carried out
o demonstrate the effectiveness and efficiency of the proposed
ncremental algorithms. In these experiments, the summary of
ine employed datasets are shown in Table 8, seven of which are
btained from UCI. In order to evaluate the proposed incremen-
al algorithms in larger datasets, two artificial datasets are also
rovided, i.e., AD1 and AD2. In datasets Mice Protein Expression
nd Dermatology, we delete some objects and attributes with
issing values. Some datasets have been used for updating ap-
roximations in dynamic ordered datasets [68–71] and attribute
eduction work [40,72]. In this paper, all algorithms are coded in
ava language and run on a computer with 3.20 GHz CPU Intel(R)
ore(TM) i7-8700, 16.0 GB of memory, and 64-bit Windows 10
peration system.
In order to evaluate the performance of the proposed incre-

ental attribute reduction algorithms IAR-A and IAR-D, we com-
are the proposed algorithms with four existing attribute reduc-
ion algorithms HAR, DRSQR [40], FEAR [73], and NRSAR [74]. Al-
orithm HAR is a general heuristic attribute reduction algorithm
sing dominance conditional entropy given in Algorithm 1. Algo-
ithm DRSQR is a dominance-based rough set based QuickReduct
lgorithm. Algorithm FEAR is a fuzzy entropy based attribute
eduction algorithm. Algorithm NRSAR is an attribute reduc-
ion algorithm using neighborhood entropy based on neighbor-
ood rough set. Moreover, we use four classifiers BayesNet, Ran-
omTree, OLM, and OSDL in Weka to test the classification effect
f the reduct generated using them. 10-fold cross-validation is
dopted in classification.

.1. Performance evaluations of algorithm IAR-A when adding mul-
iple objects

In this subsection, we evaluate the performance of algorithm
AR-A in terms of effectiveness and efficiency. In terms of effec-
iveness, we compare algorithm IAR-A with other four algorithms
rom classification accuracy. In terms of efficiency, we compare
lgorithm IAR-A with other four algorithms from two aspects:
omputational time and speed-up ratio. The specific experimental
esign is shown below.

.1.1. Effectiveness comparison
This subsection compares the effectiveness of algorithm IAR-A

ith other four algorithms. The dynamic datasets are simulated
y the following way. We randomly select 50% of the objects
rom each dataset in Table 8 as the original object set, and the
emaining 50% objects are treated as the added objects. Algo-
ithms IAR-A, HAR, DRSQR, FEAR, and NRSAR are used to calculate
new reduct when the remaining 50% of the objects are added

o the original 50% object set. Subsequently, we separately tested
he classification accuracy of the reducts generated by using
hese five algorithms. The experimental results are presented
n Tables 9 and 10, where ‘‘Raw’’ represents the classification
ccuracy of the raw attribute set. Note that in Table 9, the number
n bracket after each classification accuracy result indicates the
ize of the generated reduct. In the following, the structure of
ables 10, 11, and 12 is similar to that of Table 9.
As indicated in Tables 9 and 10, the classification accuracy of

he reducts generated using algorithm IAR-A in the four classifiers
s equal or even slightly higher than that of the reducts generated
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Table 6
The comparisons of the time and space complexity of algorithms HAR and IAR-D.
Algorithm HAR IAR-D

Time complexity O(|C ||U ′|2 + |C |2|U ′|2 + |C |2|U ′|2 + |B|2|U ′|2) O(|U−||U | + (|C | − |B|)|U ′|2 + |B|2|U ′|2)
Space complexity O(|U ′|2 + |C ||U ′|2) O(|U ′|2 + (|C | − |B|)|U ′|2)
Table 7
The illustration of the calculation process of Algorithm 3.
Steps Operations

1 Delete object set as U ′ ← U − U− . Initialize original reduct as B← RedU . Initialize known matrices as
M⪰CU ′ ← M⪰CU , M⪰BU ′ ← M⪰BU , M⪰dU ′ ← M⪰dU , D⪰CU ′ ← D⪰CU , D⪰C∪{d}U ′ ← D⪰C∪{d}U , D⪰BU ′ ← D⪰BU , D⪰B∪{d}U ′ ← D⪰B∪{d}U .

2 Update dominance relation matrices as M⪰CU ′ , M
⪰B
U ′ , M

⪰C∪{d}
U ′ , and M⪰B∪{d}U ′ , then turn to Step 3.

3 Update dominance diagonal matrices as D⪰CU ′ , D
⪰C∪{d}
U ′ , D⪰BU ′ , and D⪰B∪{d}U ′ , then turn to Step 4.

4 Calculate two new MDCEs as MDH⪰d|C (U
′) = 0, MDH⪰d|B(U

′) = 0 on the basis of the updated dominance diagonal
matrices in Step 4, then turn to Steps 5–9.

5–9 Because the condition MDH⪰d|C (U
′) = MDH⪰d|B(U

′) is satisfied, then turn to Step 16.

16–21 For each a ∈ B, calculate MDH⪰d|(B−{a})(U
′) as MDH⪰d|B−{a1}(U

′) = 0, MDH⪰d|B−{a2}(U
′) = 0, MDH⪰d|B−{a3}(U

′) = 0.2340.
Because the conditions MDH⪰d|(B−{a1})(U

′) = MDH⪰d|B(U
′) and MDH⪰d|(B−{a2})(U

′) = MDH⪰d|B(U
′) are satisfied, then a1

and a2 are redundant attributes, and then delete them from B, i.e., B = {a3}, then turn to Steps 22–23.

22–23 Output the final reduct as RedU ′ = {a3}.
Table 8
The description of datasets.
No. Datasets Abbreviation Objects Attributes Classes

1 Wine Wine 178 13 3
2 Leaf Leaf 340 15 30
3 Ionosphere Iono 351 34 2
4 Dermatology Derm 358 34 6
5 Libras Movement Libras 360 90 15
6 Mice Protein Expression Mice 1077 68 8
7 Cardiotocography Card 2093 21 3
8 Artificial Data 1 AD1 7180 34 2
9 Artificial Data 2 AD2 8501 34 2

using other four algorithms for most datasets, as fully illustrated
by their average values. This finding proves that the generated
reduct using algorithm IAR-A is feasible. Hence, we can conclude
from Tables 9 and 10 that algorithm IAR-A is effective.

5.1.2. Efficiency comparison
In this subsection, to test the efficiency of algorithm IAR-

, we compare algorithm IAR-A with other four algorithms in
erms of computational time and speed-up ratio. The dynamic
hange of datasets is simulated in the following way. For each
ataset in Table 8, five testing sets are constructed. First, 50%
f the objects are randomly selected as the original object set.
ubsequently, we randomly add objects from the remaining 50%
bjects to the original object set to obtain dynamic datasets for
esting (i.e., 10%, 20%, 30%, 40%, and 50% of the objects from the
emaining 50% objects are randomly selected and added to the
riginal object set). Then, we compare the time consumed via
sing different algorithms on these datasets. Fig. 1 shows the
etailed change trend of these five algorithms with different size
f datasets. The abscissa represents the size of added datasets,
nd the ordinate represents the computational time. For some
atasets, the calculation time span of these five algorithms is
elatively large. This situation causes some curves to be very
ense in one coordinate system, and it is difficult to distinguish
hem. To solve this issue, we added corresponding subgraphs to
he figures of dense curves to clearly show the change of these
urves.
For example, Fig. 1(b) shows that the curves of algorithms

RSAR, FEAR, HAR, and IAR-A are too dense, so we add a subgraph
o Fig. 1(b), to clearly show the changes trend of these four
12
algorithms. The following, the structures of Figs. 1(h), 3(b), 3(c),
3(e), 3(f), 3(h), and 3(i) are similar to those of Fig. 1(b).

From Fig. 1, the computational time of these five algorithms
increases as the size of added object sets increase. It can be
observed from each sub-figure that the computational time of
algorithm IAR-A is smaller than that of other four algorithms.
In particular, for datasets AD1 and AD2, the computational time
of algorithm IAR-A is significantly shorter than that of other
four algorithms. This indicates that algorithm IAR-A can compute
a reduct in a much shorter time, especially for large datasets,
the time-saving effect is more obvious. The main reason is that
algorithm IAR-A uses previous knowledge, which avoids some re-
calculation. Conversely, other four algorithms retrain the changed
datasets from scratch, which do not use the knowledge already
generated in the original dataset and do a lot of repeated calcula-
tions. Therefore, algorithm IAR-A is more efficient than other four
algorithms.

Subsequently, we again demonstrate the efficiency of algo-
rithm IAR-A from the aspect of speed-up ratio. We compute
the speed-up ratio that algorithm IAR-A relates to other four
algorithms on the basis of the results shown in Fig. 1. The experi-
mental results are shown in Fig. 2, where the abscissa denotes the
size of the added datasets and the ordinate denotes the value of
the speed-up ratio. For different datasets, the speed-up ratio span
of these algorithms is relatively large. Similarly, this situation also
causes the curves to be very dense in one coordinate system, and
it is difficult to distinguish them. To solve this issue, we show
some experimental results with a small numerical range in the
form of subgraph. For example, Fig. 2(a) shows the experimental
results of datasets Derm, Card, AD1, and AD2, and their numerical
range is [1, 90]. The subgraph in Fig. 2(a) shows the experimental
results of datasets Wine, Leaf, Iono, Libras, and Mice, and their nu-
merical range is [1, 8]. The following, the structures of Figs. 2(b),
2(c), 2(d), 4(a), 4(b), 4(c), and 4(d) are similar to those of Fig. 2(a).

From Fig. 2, it can be observed that all speed-up ratios are
greater than 1. This indicates that for all datasets, algorithm IAR-
A is faster than the other four algorithms. What is more, for
most datasets, algorithm IAR-A is at least nearly 2 times or more
faster than the other four algorithms. It is worth pointing out that
for some large datasets, such as AD1 and AD2, algorithm IAR-A
is even tens of times faster than algorithms NRSAR, FEAR, and
DRSQR. The experimental results again prove that the efficiency
of algorithm IAR-A.
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Fig. 1. The computational time of different algorithms versus different ratios of adding objects.
able 9
he comparison of classification accuracies of different algorithms on BayesNet and RandomTree (%)
Datasets BayesNet RandomTree

Raw NRSAR FEAR DRAQR HAR IAR-A Raw NRSAR FEAR DRAQR HAR IAR-A

Wine 98.88 80.90 (1) 85.44 (11) 94.94 (11) 98.88 (12) 98.88 (12) 91.01 72.47 (1) 84.94 (11) 82.70 (11) 91.01 (12) 91.01 (12)
Leaf 63.82 65.00 (13) 62.65 (13) 19.41 (1) 61.47 (9) 68.82 (9) 59.12 56.76 (13) 60.18 (13) 19.12 (1) 53.82 (9) 60.29 (9)
Iono 89.46 74.93 (1) 90.31 (17) 88.32 (21) 88.32 (23) 88.03 (23) 88.60 74.93 (1) 88.03 (17) 86.89 (21) 84.90 (23) 88.76 (23)
Derm 97.75 69.57 (4) 98.45 (11) 98.16 (19) 88.03 (20) 98.62 (21) 90.14 70.28 (4) 90.71 (11) 100 (19) 85.76 (20) 90.70 (21)
Libras 62.50 56.38 (27) 62.77 (31) 56.38 (27) 60.33 (33) 63.90 (33) 66.11 61.66 (27) 67.22 (31) 65.27 (27) 65.56 (33) 65.00 (33)
Mice 83.10 65.55 (5) 84.02 (43) 75.11 (11) 81.34 (27) 81.06 (27) 81.15 81.15 (5) 80.50 (43) 83.37 (11) 79.57 (27) 84.27 (27)
Card 86.77 78.30 (1) 86.71 (17) 85.52 (13) 87.14 (13) 87.14 (13) 91.30 78.30 (1) 91.30 (17) 91.20 (13) 91.59 (13) 91.59 (13)
AD1 99.68 74.69 (1) 98.79 (15) 99.35 (23) 99.76 (23) 99.76 (23) 100 74.69 (1) 100 (15) 100 (23) 100 (23) 100 (23)
AD2 99.69 74.59 (1) 99.69 (16) 99.69 (23) 99.92 (23) 99.92 (23) 100 74.59 (1) 100 (16) 100 (23) 100 (23) 100 (23)
Average 86.85 71.10 85.43 79.65 85.02 87.35 85.27 71.65 84.76 80.95 83.58 85.74
5.1.3. Summary
From the comparisons of effectiveness and efficiency between

ive different algorithms, it can be concluded that our algorithm
AR-A is better than the other four algorithms. The computational
ime required to obtain a feasible reduct by algorithm IAR-A is
uch shorter than that of the other four algorithms. Therefore,
hen multiple objects are added to an ODS, we can obtain a

easible reduct by algorithm IAR-A more efficiently.
13
5.2. Performance evaluations of algorithm IAR-d when deleting mul-
tiple objects

This subsection evaluates the performance of algorithm IAR-
D in terms of effectiveness and efficiency. Algorithm IAR-D and
other four algorithms are compared in the same scheme as
the previous subsection. The specific experimental design is de-
scribed as follows.
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Fig. 2. The speed-up ratios that algorithm IAR-A relates to different algorithms.
able 10
he comparison of classification accuracies of different algorithms on OLM and OSDL (%)
Datasets OLM OSDL

Raw NRSAR FEAR DRAQR HAR IAR-A Raw NRSAR FEAR DRAQR HAR IAR-A

Wine 30.90 33.15 (1) 32.58 (11) 34.83 (11) 42.58 (12) 42.58 (12) 46.07 38.76 (1) 44.94 (11) 41.12 (11) 47.75 (12) 47.75 (12)
Leaf 4.12 4.12 (13) 4.12 (13) 4.94 (1) 5.00 (9) 5.41 (9) 13.82 14.12 (13) 14.12 (13) 3.53 (1) 8.53 (9) 14.41 (9)
Iono 63.00 64.10 (1) 65.53 (17) 63.82 (21) 63.82 (23) 66.53 (23) 50.71 35.90 (1) 40.46 (17) 43.59 (21) 45.58 (23) 53.02 (23)
Derm 86.05 49.57 (4) 80.70 (11) 87.18 (19) 86.05 (20) 88.11 (21) 83.38 35.77 (4) 51.83 (11) 83.94 (19) 81.69 (20) 88.59 (21)
Libras 24.72 23.33 (27) 25.00 (31) 24.72 (27) 24.72 (33) 25.27 (33) 17.22 13.61 (27) 16.66 (31) 18.61 (27) 19.44 (33) 19.44 (33)
Mice 14.02 16.52 (5) 14.39 (43) 26.18 (11) 17.82 (27) 16.80 (27) 16.80 12.72 (5) 24.60 (43) 43.45 (11) 32.86 (27) 29.61 (27)
Card 79.93 66.36 (1) 80.64 (17) 80.55 (13) 86.23 (13) 86.23 (13) 72.47 78.30 (1) 67.46 (17) 77.49 (13) 76.63 (13) 79.63 (13)
AD1 94.72 63.89 (1) 85.62 (15) 94.65 (23) 93.47 (23) 93.47 (23) 88.12 36.10 (1) 80.04 (15) 88.12 (23) 88.75 (23) 88.75 (23)
AD2 93.47 63.88 (1) 83.81 (16) 90.28 (23) 93.47 (23) 93.47 (23) 88.06 36.11 (1) 81.34 (16) 87.63 (23) 88.75 (23) 88.75 (23)
Average 54.55 42.77 52.49 56.35 57.02 57.54 52.96 33.49 46.83 54.16 54.44 56.66
5.2.1. Effectiveness comparison
In this subsection, we compare the effectiveness of algorithm

AR-D with other four algorithms. The dynamic datasets are sim-
lated in the following way. For each dataset in Table 8, we
andomly select the 50% objects as deleted multiple objects. Al-
orithms IAR-D, HAR, DRSQR, FEAR, and NRSAR are employed to
ompute a new reduct when the selected 50% objects are deleted.
ubsequently, we separately tested the classification accuracy
f the reducts generated by using these five algorithms. The
xperimental results are recorded in Tables 11 and 12.
From Tables 11 and 12, we find that the classification accuracy

f the reducts generated using the proposed algorithm IAR-D
n the four classifiers is very close or even slightly higher than
14
that of the reducts generated using other four algorithms for
most datasets, as fully illustrated by their average values. This
finding proves that the reduct generated by using algorithm IAR-
D have the same or even higher classification ability than the
other four algorithms. Hence, the experimental results indicate
that algorithm IAR-D is effective.

5.2.2. Efficiency comparison
In this subsection, to demonstrate the efficiency of our al-

gorithm IAR-D, we compare algorithm IAR-D with other four
algorithms in terms of computational time and speed-up ratio.
The dynamic change of datasets is simulated in the following
way. For each dataset in Table 8, five testing sets are constructed.



B. Sang, H. Chen, L. Yang et al. Knowledge-Based Systems 212 (2021) 106583

T
T

s

Fig. 3. The computational time of different algorithms versus different ratios of deleting objects.
able 11
he comparison of classification accuracies of different algorithms on BayesNet and RandomTree (%)
Datasets BayesNet RandomTree

Raw NRSAR FEAR DRAQR HAR IAR-D Raw NRSAR FEAR DRAQR HAR IAR-D

Wine 90.63 58.42 (1) 93.25 (9) 50.56 (1) 93.26 (9) 93.26 (9) 82.13 48.31 (1) 84.38 (9) 48.31 (1) 88.76 (9) 88.76 (9)
Leaf 58.24 60.00 (13) 57.64 (13) 52.94 (8) 50.59 (8) 50.59 (8) 58.24 52.35 (13) 50.00 (13) 46.47 (8) 52.35 (8) 52.35 (8)
Iono 92.00 76.00 (1) 90.85 (11) 88.57 (4) 86.86 (16) 86.29 (16) 84.57 76.00 (1) 80.42 (11) 84.14 (4) 83.43 (16) 85.00 (16)
Derm 90.21 65.36 (4) 96.08 (11) 96.08 (16) 96.09 (18) 96.97 (18) 81.62 63.68 (4) 88.82 (11) 81.06 (16) 87.15 (18) 88.83 (18)
Libras 30.44 36.66 (23) 30.00 (28) 14.44 (2) 35.00 (14) 38.33 (19) 57.22 51.66 (23) 47.77 (28) 27.77 (2) 47.78 (14) 49.44 (19)
Mice 76.39 53.90 (4) 74.72 (40) 71.00 (15) 65.80 (19) 70.63 (18) 70.56 69.70 (4) 70.67 (40) 70.79 (15) 69.15 (19) 71.19 (18)
Card 84.16 70.22 (1) 84.74 (13) 84.97 (12) 87.69 (13) 87.92 (12) 91.13 70.13 (1) 91.79 (13) 91.12 (12) 89.41 (13) 89.31 (12)
AD1 99.00 74.95 (1) 90.85 (16) 98.99 (21) 99.76 (23) 99.76 (23) 100 74.95 (1) 100 (16) 100 (21) 100 (23) 100 (23)
AD2 99.13 75.38 (1) 98.96 (16) 99.03 (22) 99.22 (23) 99.22 (23) 100 75.38 (1) 100 (16) 100 (22) 100 (23) 100 (23)
Average 80.02 63.43 79.68 72.95 79.36 80.33 80.61 64.68 79.32 72.18 79.78 80.54
We randomly delete objects from the raw dataset proportion-
ally to obtain dynamic datasets for testing (i.e., 10%, 20%, 30%,
40%, and 50% of the raw dataset as the deleted object sets are
randomly selected and then them are deleted successively), and
then respectively record the running time of different algorithms
on these datasets. The detailed change trend lines of different
algorithms with different size of datasets are shown in Fig. 3.

Fig. 3 clearly shows that as the proportion of deleted object
et increases, the running time of all algorithms decreases. It
15
can be observed from each sub-figure that the computational
time of algorithm IAR-D is significantly lower than that of other
four algorithms. This indicates that algorithm IAR-D can obtain
a reduct in a much shorter time. The main reason should be
owed to the proposed algorithm IAR-D obtains a new reduct
based on previous knowledge, which avoids some recalculation.
Conversely, the other four algorithms are employed to retrain the
changed dataset as a new one from scratch, which do not use the
knowledge of generated from the original dataset. So they do a
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Fig. 4. The speed-up ratios that algorithm IAR-D relates to other different algorithms.
able 12
he comparison of classification accuracies of different algorithms on OLM and OSDL (%)
Datasets OLM OSDL

Raw NRSAR FEAR DRAQR HAR IAR-D Raw NRSAR FEAR DRAQR HAR IAR-D

Wine 32.58 33.71 (1) 33.71 (9) 29.43 (1) 33.71 (9) 33.71 (9) 50.56 53.93 (1) 57.30 (9) 53.93 (1) 59.55 (9) 59.55 (9)
Leaf 5.88 5.88 (13) 5.88 (13) 5.88 (8) 5.88 (8) 5.88 (8) 20.00 20.00 (13) 20.58 (13) 27.46 (8) 20.00 (8) 20.00 (8)
Iono 64.57 66.28 (1) 64.00 (11) 68.00 (4) 66.85 (16) 66.28 (16) 28 23.71 (1) 28.57 (11) 31.42 (4) 30.28 (16) 32.00 (16)
Derm 37.43 44.13 (4) 59.77 (11) 51.95 (16) 41.89 (18) 45.81 (18) 64.80 38.54 (4) 46.36 (11) 71.65 (16) 65.36 (18) 73.74 (18)
Libras 18.33 18.33 (23) 19.44 (28) 12.77 (2) 20.00 (14) 20.44 (19) 16.11 15.00 (23) 9.44 (28) 12.77 (2) 10.55 (14) 17.11 (19)
Mice 13.38 15.05 (4) 13.38 (40) 14.58 (15) 15.24 (19) 17.65 (18) 19.51 7.62 (4) 28.81 (40) 35.02 (15) 30.85 (19) 30.29 (18)
Card 72.99 67.55 (1) 70.09 (13) 72.33 (12) 74.04 (13) 74.14 (12) 77.19 70.22 (1) 81.20 (13) 84.44 (12) 84.63 (13) 88.77 (12)
AD1 94.31 63.95 (1) 87.66 (16) 94.12 (21) 94.31 (23) 94.31 (23) 80.01 36.04 (1) 75.62 (16) 86.07 (21) 86.07 (23) 86.07 (23)
AD2 94.75 64.58 (1) 88.28 (16) 94.68 (22) 94.75 (23) 94.75 (23) 82.23 35.41 (1) 78.16 (16) 87.27 (22) 87.27 (23) 87.27 (23)
Average 48.25 42.16 49.13 49.30 49.63 50.33 48.71 33.39 47.34 54.47 52.73 54.98
lot of repeated calculations. From the above analysis, we conclude
that algorithm IAR-D is more efficient than other four algorithms.

Afterwards, the efficiency of algorithm IAR-D is verified again
y calculating the speed-up ratio that algorithm IAR-D relates
o other four algorithms. Similarly, the speed-up ratio of each
ataset is calculated according to the results shown in Fig. 3, and
he results are shown in Fig. 4.

From Fig. 4, we find that all speed-up ratios are greater than
. This finding proves that algorithm IAR-D is faster than the
ther four algorithms for all datasets. Especially compared with
lgorithms DRSQR and HAR, for all datasets, algorithm IAR-D
s at least four times faster than them. Furthermore, for large
atasets AD1 and AD2, algorithm IAR-D is significantly dozens
16
or even more than a hundred times faster than the other four
algorithms. The experimental results again verify that algorithm
IAR-D exhibits better efficiency than the other four algorithms.

5.2.3. Summary
We can draw the conclusion that the incremental algorithm

IAR-D outperforms the other four algorithms by comparing their
effectiveness and efficiency. The computational time required to
obtain a feasible reduct by algorithm IAR-D is much less than that
of the other four algorithms. Accordingly, a feasible reduct can be
obtained more efficiently by using algorithm IAR-D when deleting
multiple objects from an ODS.
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. Conclusion and future work

In this study, we investigate incremental attribute reduction
pproaches for dynamic ordered data in DRSA framework. First,
e present the definitions of dominance relation matrix and
ominance diagonal matrix in an OIS, and then propose a matrix-
ased computation method of dominance conditional entropy,
.e., MDCE, which is used as an uncertainty measure in attribute
eduction algorithms. Second, the updating principles of MDCE
re introduced when multiple objects vary. On this basis, we
evelop two incremental attribute reduction algorithms i.e., IAR-
and IAR-D. Final, the experiments are conducted to compare

he effectiveness and efficiency of the proposed incremental algo-
ithms with the other four algorithms. Experimental results show
hat the proposed incremental algorithms can efficiently calculate
n effective reduct from dynamic ordered data.
The variation of an ODS may be many-sided. How to further

se the incremental learning mechanism to complex dynamic
ata environment is an urgent problem to be solved. In complex
onotonic classification tasks, objects are typically characterized
y means of multimodality fuzzy attributes. Further extending
RSA method to this type of monotonic classification task is
meaningful work and is deserved to be studied. Concretely,

he following our future research work has three aspects. (1)
e will develop incremental approaches for attribute reduction

n dynamic ordered data with attribute set and attribute value
arying over time, respectively. (2) We will extend the proposed
ncremental approaches for attribute reduction to dominance-
ased fuzzy rough set model. (3) We will study DRSA model for
ulti-modality fuzzy monotonic classification tasks.
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